
CSE 451: Operating Systems

Winter 2013

Introduction to Operating Systems

Gary Kimura

2

Introduction to Operating Systems

• What is it?
• “… manages the computer hardware”

• “… basis for application programs”

• “Software to manage a computer’s resources for its users and

applications”

• Once upon a time:
• Programs were run one at a time, no multitasking

• If you wanted to read data, you wrote the code to read from the

punch card reader

• If you wanted to output data, you wrote code to flash lights or to

make the printer do things

• If your application “crashed”, YOU (or the operator) would push

a button on the computer to get it to restart, and read the next

program from the card reader

• Was this an appropriate use of YOUR time?

3

What is an OS?

• How can we make this easier?

– Let programs share the hardware (CPU, memory, devices,

storage)

– Supply software to abstract hardware (disk vs net or wireless

mouse vs optical mouse vs wired mouse)

• Abstract means to hide details, leaving only a common skeleton

– “All the code you didn’t write” in order to get your application

to run. The little box, below, is simple, no?

Applications

OS

Hardware

4

What’s in an OS?

Machine Dependent

Services

Interrupts, Cache, Physical Memory, TLB, Hardware Devices

Generic I/O
File System

Memory Management

Process Management

Virtual Memory Networking

Naming Access Control

Windowing & graphics

Windowing & Gfx

Machine

Independent

Services

Application

Services
SYSTEM CALL API

MD API

Device Drivers

Shells System Utils

GTA-2 Sql Server

Logical OS Structure

5

Why bother with an OS?

• Application benefits

– programming simplicity

• see high-level abstractions (files) instead of low-level hardware

details (device registers)

• abstractions are reusable across many programs

– portability (across machine configurations or architectures)

• device independence: 3Com card or Intel card? User benefits

– safety

• program “sees” own virtual machine, thinks it owns computer

• OS protects programs from each other

• OS multiplexes resources across programs

– efficiency (cost and speed)

• share one computer across many users

• concurrent execution of multiple programs

6

The major OS issues

• Structure: how is the OS organized? What are the resources a

program can use?

• Sharing: how are resources shared across users?

• Naming: how are resources named (by users or programs)?

• Security: how is the integrity of the OS and its resources

ensured?

• Protection: how is one user/program protected from another?

• Performance: how do we make it all go fast?

• Reliability: what happens if something goes wrong (either with

hardware or with a program)?

• Extensibility: can we add new features?

• Communication: how do programs exchange information,

including across a network?

7

Major issues in OS (2)

• Concurrency: how are parallel activities created and controlled?

• Scale and growth: what happens as demands or resources

increase?

• Persistence: how to make data last longer than programs

• Compatibility & Legacy Apps: can we ever do anything new?

• Distribution: Accessing the world of information

• Accounting: who pays the bills, and how do we control resource

usage?

• These are engineering trade-offs, not right and wrong

• Based on objectives and constraints

8 © Silberschatz, Galvin and Gagne

Progression of concepts and form factors

9

Has it all been discovered?

• New challenges constantly arise

– embedded computing (e.g., iPod)

– sensor networks (very low power, memory, etc.)

– peer-to-peer systems

– ad hoc networking

– scalable server farm design and management (e.g., Google)

– software for utilizing huge clusters (e.g., MapReduce,

BigTable)

– overlay networks (e.g., PlanetLab)

– worm fingerprinting

– finding bugs in system code (e.g., model checking)

10

Has it all been discovered?

• Old problems constantly re-define themselves

– the evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of

mainframes

– but the ubiquity of PCs re-defined the issues in protection

and security

11

Protection and security as an example

• none

• OS from my program

• your program from my program

• my program from my program

• access by intruding individuals

• access by intruding programs

• denial of service

• distributed denial of service

• spoofing

• spam

• worms

• viruses

• stuff you download and run knowingly (bugs, trojan horses)

• stuff you download and run obliviously (cookies, spyware)

12

OS history

• Before the beginning

– Computers were rare, huge, power-sucking and hugely expensive

– More expensive than people. This leads to a huge effort to make the most

out of the hardware

• In the very beginning…

– OS was just a library of code that you linked into your program; programs

were loaded in their entirety into memory, and executed

– interfaces were literally switches and blinking lights

• And then came batch systems

– OS was stored in a portion of primary memory

– OS loaded the next job into memory from the card reader

• job gets executed

• output is printed, including a dump of memory

• repeat…

– card readers and line printers were very slow (sometimes 10’s of minutes

just to read in a program)

• so CPU was idle much of the time (wastes an expensive resource)

13

Spooling

• Disks were much faster than card readers and

printers (once they were invented)

• Spool (Simultaneous Peripheral Operations On-Line)

– while one job is executing, spool next job from card reader

onto disk

• slow card reader I/O is overlapped with CPU

– can even spool multiple programs onto disk/drum

• OS must choose which to run next

• job scheduling

– but, CPU still idle when a program interacts with a peripheral

during execution (wastes an expensive resource)

– buffering, double-buffering

14

Multiprogramming

• To increase system utilization, multiprogramming

OSs were invented

– keeps multiple runnable jobs loaded in memory at once

– overlaps I/O of a job with computation of another

• while one job waits for I/O completion, OS runs instructions

from another job

– to benefit, need asynchronous I/O devices

• need some way to know when devices are done

– interrupts

– polling

– goal: optimize system throughput

• perhaps at the cost of response time. That’s ok until people

start getting more expensive than computers…

15

Timesharing

• To support interactive use, create a timesharing OS:

– multiple terminals into one machine

– each user has illusion of entire machine to him/herself

– optimize response time, perhaps at the cost of throughput

(person-time more expensive than computer time!)

• Timeslicing

– divide CPU equally among the users

– if job is truly interactive (e.g., editor), then can jump between

programs and users faster than users can generate load

– permits users to interactively view, edit, debug running

programs (why does this matter?)

16

Timesharing

• MIT CTSS system (operational 1961) was among the first timesharing

systems

– only one user memory-resident at a time (32KB memory!)

• MIT Multics system (operational 1968) was the first large timeshared

system

– nearly all OS concepts can be traced back to Multics!

– “second system syndrome”

17

Parallel systems

• Some applications can be written as multiple activities

– can speed up the execution by running multiple threads/processes

simultaneously on multiple CPUs [Burroughs D825, 1962]

– need OS and language primitives for dividing program into multiple

parallel activities

– need OS primitives for fast communication among activities

• degree of speedup dictated by communication/computation

ratio (Amdahl’s Law)

– many flavors of parallel computers today

• SMPs (symmetric multi-processors, multi-core)

• MPPs (massively parallel processors)

• NOWs (networks of workstations)

• computational grid (SETI @home, FoldIt!)

18

Personal computing

• Primary goal was to enable new kinds of applications

• Bit mapped display [Xerox Alto,1973]

– new classes of applications

– new input device (the mouse)

• Move computing near the display

– why?

• Window systems

– the display as a managed resource

• Local area networks [Ethernet]

– why?

• Effect on OS?

19

Distributed OS

• Distributed systems to facilitate use of geographically

distributed resources

– workstations on a LAN

– servers across the Internet

• Supports communications between programs

– interprocess communication

• message passing, shared memory

– networking stacks

• Sharing of distributed resources (hardware, software)

– load balancing, authentication and access control, …

• Speedup isn’t the issue

– access to diversity of resources is goal

20

What is an OS?

• How were OS’s programmed?

– Originally in assembly language

• Maximal power, all features of the hardware exposed to

developers

• Minimal clarity, takes extreme effort

• Minimal “portability”, OS is tightly tied to a single manufacturer’s

architecture

• GCOS (Honeywell/GE, ‘62), MVS and OS/360 (IBM, ‘64),

TOPS-10 (Digital, ‘64)

– Some special high-level languages

• ESPOL, NEWP, DCALGOL (Burroughs, ‘61)

– General high-level languages (with some assembly help)

• PASCAL (UCSD p-system ’78, early Macintosh)

• PL/1 (Multics, ’64)

21

What is an OS?

• What do we do today?

– C

• Adequate to hide most hardware issues

– Precision, pointers

• Procedural, reasonably type-safe, modular

• Adequate for programmer to gauge efficiency

– Plus some assembler

• C does not reveal enough hardware

• Assembler source files

• In-line assembler in C files (only where it makes sense!)

– Very little C++, next to zero Java

• Windows GUI completely in C++

• Can hide inefficiencies!

