CSE 451: Operating Systems
Winter 2013

Introduction to Operating Systems

Gary Kimura

Introduction to Operating Systems

 Whatis it?
« “... manages the computer hardware”
» “... basis for application programs”

» “Software to manage a computer’s resources for its users and
applications”

« Once upon a time:
« Programs were run one at a time, no multitasking

 |If you wanted to read data, you wrote the code to read from the
punch card reader

 |f you wanted to output data, you wrote code to flash lights or to
make the printer do things

« If your application “crashed”, YOU (or the operator) would push
a button on the computer to get it to restart, and read the next
program from the card reader

» Was this an appropriate use of YOUR time?

What is an OS?

 How can we make this easier?
— Let programs share the hardware (CPU, memory, devices,
storage)

— Supply software to abstract hardware (disk vs net or wireless
mouse vs optical mouse vs wired mouse)
» Abstract means to hide details, leaving only a common skeleton

— “All the code you didn’t write” in order to get your application
to run. The little box, below, is simple, no?

Applications
OS

Hardware

Application
Services
SYSTEM

Machine
Independent
Services

MD API

Machine Dependent
Services

What's in an OS?

Device Drivers

GTA-2 Sql Server
ICALL API System Utils Shells | | Windowing & graphics
Naming Access Control Windowing & Gfx
Networking Virtual Memory
Generic 1/0 File System Process Management

Memory Management

Interrupts, Cache, Physical Memory, TLB, Hardware Devices

A\ 4

Logical OS Structure

Why bother with an OS?

« Application benefits
— programming simplicity

» see high-level abstractions (files) instead of low-level hardware
details (device registers)

 abstractions are reusable across many programs
— portability (across machine configurations or architectures)
» device independence: 3Com card or Intel card? User benefits
— safety
* program “sees” own virtual machine, thinks it owns computer
» OS protects programs from each other
» OS multiplexes resources across programs
— efficiency (cost and speed)
« share one computer across many users
« concurrent execution of multiple programs

he major OS Issues

Structure: how is the OS organized? What are the resources a
program can use?

Sharing: how are resources shared across users?
Naming: how are resources named (by users or programs)?

Security: how is the integrity of the OS and its resources
ensured?

Protection: how is one user/program protected from another?
Performance: how do we make it all go fast?

Reliability: what happens if something goes wrong (either with
hardware or with a program)?

Extensibility: can we add new features?

Communication: how do programs exchange information,
Including across a network?

Major issues in OS (2)

Concurrency: how are parallel activities created and controlled?

Scale and growth: what happens as demands or resources
Increase?

Persistence: how to make data last longer than programs
Compatibility & Legacy Apps: can we ever do anything new?
Distribution: Accessing the world of information

Accounting: who pays the bills, and how do we control resource
usage”?

These are engineering trade-offs, not right and wrong
Based on objectives and constraints

Progression of concepts and form factors

1950 1960 1970 1980 1990

MULTICS
mainframes \
no compilers time distributed

software shared multiuser systems

batch \ multiprocessor

resident networked fault tolerant
monitors

UNIX

minicomputers .
no compilers

software : : .
time multiuser multiprocessor

;?osyiq?t%r:gts shared n;worked fault tolerant

“
clustered
UNIX

desktop computers -
no compilers

software interactive multiprocessor

multiuser networked

UNIX

compilers no
software

handheld computers

interactive
networked

© Silberschatz, Galvin and Gagne

Has It all been discovered?

 New challenges constantly arise

embedded computing (e.g., iPod)

sensor networks (very low power, memory, etc.)
peer-to-peer systems

ad hoc networking

scalable server farm design and management (e.g., Google)

software for utilizing huge clusters (e.g., MapReduce,
BigTable)

overlay networks (e.g., PlanetLab)
worm fingerprinting
finding bugs in system code (e.g., model checking)

Has It all been discovered?

* Old problems constantly re-define themselves

— the evolution of PCs recapitulated the evolution of

minicomputers, which had recapitulated the evolution of
mainframes

— but the ubiquity of PCs re-defined the issues in protection
and security

10

Protection and security as an example

none
OS from my program

your program from my program

my program from my program

access by intruding individuals

access by intruding programs

denial of service

distributed denial of service

spoofing

spam

worms

viruses

stuff you download and run knowingly (bugs, trojan horses)
stuff you download and run obliviously (cookies, spyware)

11

OS history

Before the beginning
— Computers were rare, huge, power-sucking and hugely expensive
— More expensive than people. This leads to a huge effort to make the most
out of the hardware
In the very beginning...

— OS was just a library of code that you linked into your program; programs
were loaded in their entirety into memory, and executed

— interfaces were literally switches and blinking lights

And then came batch systems
— OS was stored in a portion of primary memory

— OS loaded the next job into memory from the card reader
» job gets executed
* output is printed, including a dump of memory
* repeat...
— card readers and line printers were very slow (sometimes 10’s of minutes
just to read in a program)
* so CPU was idle much of the time (wastes an expensive resource)

12

Spooling

 Disks were much faster than card readers and
printers (once they were invented)

« Spool (Simultaneous Peripheral Operations On-Line)

— while one job is executing, spool next job from card reader
onto disk

» slow card reader I/O is overlapped with CPU
— can even spool multiple programs onto disk/drum

 OS must choose which to run next
* job scheduling

— but, CPU still idle when a program interacts with a peripheral
during execution (wastes an expensive resource)

— buffering, double-buffering

13

Multiprogramming

To increase system utilization, multiprogramming
OSs were invented
— keeps multiple runnable jobs loaded in memory at once

— overlaps I/O of a job with computation of another

« while one job waits for I/O completion, OS runs instructions
from another job

— to benefit, need asynchronous /O devices

* need some way to know when devices are done
— interrupts
— polling
— goal: optimize system throughput

» perhaps at the cost of response time. That’s ok until people
start getting more expensive than computers...

14

Imesharing

« To support interactive use, create a timesharing OS:
— multiple terminals into one machine
— each user has illusion of entire machine to him/herself

— optimize response time, perhaps at the cost of throughput
(person-time more expensive than computer time!)

« Timeslicing
— divide CPU equally among the users

— if job is truly interactive (e.g., editor), then can jump between
programs and users faster than users can generate load

— permits users to interactively view, edit, debug running
programs (why does this matter?)

15

Imesharing

MIT CTSS system (operational 1961) was among the first timesharing

systems
— only one user memory-resident at a time (32KB memory!)

MIT Multics system (operational 1968) was the first large timeshared

system
— nearly all OS concepts can be traced back to Multics!

— “second system syndrome”

16

Parallel systems

Some applications can be written as multiple activities

can speed up the execution by running multiple threads/processes
simultaneously on multiple CPUs [Burroughs D825, 1962]

need OS and language primitives for dividing program into multiple
parallel activities

need OS primitives for fast communication among activities

» degree of speedup dictated by communication/computation
ratio (Amdahl’'s Law)

many flavors of parallel computers today
« SMPs (symmetric multi-processors, multi-core)
 MPPs (massively parallel processors)
 NOWSs (networks of workstations)
« computational grid (SETI @home, Foldit!)

17

Personal computing

Primary goal was to enable new kinds of applications
Bit mapped display [Xerox Alto,1973]

— new classes of applications
— new input device (the mouse)

Move computing near the display
— why?

Window systems

— the display as a managed resource
Local area networks [Ethernet]

— why?

Effect on OS?

Distributed OS

Distributed systems to facilitate use of geographically
distributed resources

— workstations on a LAN

— servers across the Internet

Supports communications between programs

— Interprocess communication
* message passing, shared memory

— networking stacks

Sharing of distributed resources (hardware, software)
— load balancing, authentication and access contral, ...

Speedup isn’t the issue
— access to diversity of resources is goal

19

What is an OS?

« How were OS’s programmed?
— Originally in assembly language
« Maximal power, all features of the hardware exposed to
developers
« Minimal clarity, takes extreme effort

« Minimal “portability”, OS is tightly tied to a single manufacturer’s
architecture

. GCOS (Honeywell/GE, ‘62), MVS and 0S/360 (IBM, ‘64),
TOPS-10 (Digital, ‘64)

— Some special high-level languages
« ESPOL, NEWP, DCALGOL (Burroughs, ‘61)

— General high-level languages (with some assembly help)
« PASCAL (UCSD p-system ’78, early Macintosh)
« PL/1 (Multics, '64)

20

What is an OS?

 What do we do today?

- C

* Adequate to hide most hardware issues

— Precision, pointers

» Procedural, reasonably type-safe, modular

» Adequate for programmer to gauge efficiency
— Plus some assembler

» C does not reveal enough hardware

« Assembler source files

* In-line assembler in C files (only where it makes sense!)
— Very little C++, next to zero Java

* Windows GUI completely in C++

« Can hide inefficiencies!

21

